产品展示
PRODUCT DISPLAY
产品展示您现在的位置: 首页 > 产品展示 > 污水废气处理设备 > 污水处理 >重金属污水处理设备

重金属污水处理设备

产品时间:2020-10-07

访问量:18

简要描述:

重金属污水处理设备
重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。处理方法是首先改革生产工艺,不用或少用毒性大的重金属,在生产地点就地处理(如不排出生产车间)

在线咨询 点击收藏

重金属污水处理设备

含有重金属废水主要来源于机械加工、矿山开采、钢铁及有色金属冶炼等。重金属具有毒性,含有重金属的废水必须加以处理之后才能够排放。那么重金属废水的危害是什么?下面和佰佰安全网了解下吧。

重金属废水污染具有毒效长期持续,生物不可降解的特点,且可通过食物链作用进入人体,并在人体内累积,从而导致各种疾病和机能紊乱,最终对人体健康造成严重危害。其中主要金属污染源有Cu、Zn、Hg、Ni、Cd、Pb和Cr等。日本水俣湾由汞中毒造成的“水俣病”,神通川流域由镉引起的“痛痛病”,就是重金属污染给人体健康带来损害的典型事例。因此有效地去除废水中的重金属已成为当前的迫切任务。

对重金属废水的治理包括传统方法和新技术。其中较传统的治理方法有化学沉淀法、电化学法、吸附法和膜分离法等。较新的技术如:纳米技术、光催化法、新型介孔材料和基因工程。由于重金属比较昂贵,在处理重金属废水过程中要考虑到重金属的回收和回用问题。另外,鉴于重金属废水浓度低,成分复杂。在选择处理方法时,应先考虑各种方法的优缺点,加强各种水处理技术的综合应用,形成组合工艺,扬长避短。随着科学技术的发展,科学工作者的努力,开发出治理重金属废水更高效,无二次污染且有利于生态环境的新技术。

接下来看下水污染成因与污水处理方法?

乡镇工业的污染有一部分是由于生产工艺落后,管理不当,缺乏环境保护意识等造成的。乡镇工业存在的这些问题不仅对环境造成了严重的危害,而且由于污染物的形成大都以各种资源能源的浪费为前提,因此上述问题实际上也提高了生产成本。如果这些问题得不到有效的解决,乡镇工业产品在国内外市场上的竞争力将会不断弱化,乡镇工业的发展也将会因此受到限制。强化乡镇企业环境管理主要从三方面着手:一是完善乡镇企业环境管理的法律体系,即各地政府要根据当地实际情况制订地方性环境保护法规,并且在此基础上制订乡镇企业主要污染行业的环境管理部门规章,使乡镇企业环境管理有法可依。二是将环境保护作为考核地方政府领导的重要内容,杜绝为了追求短期经济利益,牺牲环境的行为。三是实行排污许可证制度,实施排污总量控制,在环境敏感区扩建、改建项目,不能增加污染负荷;新建项目必须实行区域污染物总量削减,确保总量不增加。

重金属污水处理设备

  重金属废水处理工艺的膜分离的基本原理是在某种推动力作用下,利用膜的选择透过性进行分离和浓缩。膜技术作为一种新兴的分离技术,由于具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势。
         重金属废水处理工艺大多存在着处理效果不好、处理成本高、工艺流程复杂和设备占地面积大等缺点。根据膜截留组分粒径大小的不同及膜性能的差异,目前常见的膜分离过程可分为以下几种,微滤、超滤、纳滤、反渗透、电渗析等。文章就膜分离技术的原理、特点及在重金属废水处理中的应用作一综述。
纳滤
         NF技术已经广泛应用于给水处理、化工、制药、食品加工等工业过程,与传统技术方法相比,纳滤分离技术具有较高的体积浓缩因子,不产生二次污染,处理效率高、能耗低等独特的优势。在金属加工和合金生产中,经常需用大量的水冲洗,清洗水中含有浓度很高的镍、铁、铜等工业金属,采用纳滤膜技术,不仅可以回收90%以上的废水,浓缩后的重金属具有回收利用的价值。
         纳滤(NF)是介于反渗透和超滤之间的一种膜分离技术,分离机理基于空间效应和Donna效应。纳滤膜对无机盐的截留效果主要取决于膜对离子的电荷效应的强弱。通过研究纳滤膜处理镀铬废水发现在低压下截留率比较稳定,可达到95%以上。同时,浓度低时(20mg/L),离子截留率稳定后在99%以上,浓缩过程中的离子截留率也比较稳定,因而起到了分离的作用。纳滤膜在海岛饮用水制备中可有效地除去对人体健康不利的Mg2+、Ca2+等(脱除率≥96%)。
        就我国目前现状而言,在此方面亟待解决的主要有两方面:
        膜污染问题,可从研制新材料和优化NF使用工艺两方面着手,降低污染,延长纳滤膜使用寿命;
        制膜技术,我国的制膜技术还处于实验室阶段,建议加大制膜技术的研究力度,打破国外垄断,降低用膜企业的生产成本。
微滤
        由于每平方厘米滤膜中约包含1千万至1亿个小孔,孔隙率占总体积的70%-80%,故阻力很小,过滤速度较快。微孔过滤是以静压力差为推动力,利用膜的筛分作用进行分离的膜过程。微孔滤膜具有比较整齐、均匀的多空结构,
        但是还存在一些缺陷,例如污泥量大、水力停留时间长,或者是投资大、处理成本高、操作复杂等.甘胜采用的混凝—微滤工艺是将传统的化学沉淀与微滤膜分离相 结合的一种新的处理方法。许多文献都报道了对含镍废水的不同处理方法。
         其中普遍应用的有化学还原沉淀法、离子交换法等。这些方法的处理效果都很好,在静压差的作用下,小玉膜孔的粒子通过滤膜,比膜孔大的粒子则被阻拦在滤膜面上,是大小不同的组分得以分离,其作用相当于“过滤”。
         已有研究报道应用此工艺生产饮用水和处理含铬废水等,出水效果优于单一的混凝法或膜分离法.混凝—微滤工艺应用于含镍废水的处理与上述方法相比具有流程简单、工作压力低(0.01~0.03MPa)、水力停留时间短、能耗低、污泥量少、占地面积小的优点。目前,以MF的应用广,经济价值大,它是现代大工业,尤其是尖端技术工业中确保产品质量的必要手段。
         沉淀-微滤法处理重金属废水的基本原理是用碱中和使溶液中的重金属离子反应生成沉淀或胶体,再通过微滤膜过滤,以实现分离浓缩。Broom等利用重金属沉淀物(经石灰或硫化物处理)形成的动态膜,采用微滤法去除混合电镀废液中的重金属。选择0.5μm孔径的无机膜,采用沉淀-微滤法去除电镀废液中的Ni2+,能保障出水中Ni≤1.0mg/L,达到国家排放标准,缺点是膜污染严重,且因大多数处理须在强碱或硫化物条件下进行,所用膜的种类也受到了很大的限制。
超滤
          络合超滤的解络合是制约络合超滤工业化应用的主要因素,因此高效的解络合技术的研究将有助于络合超滤技术的工业化。张永锋与许振良认为络合--超滤耦合过程不仅可得到达到回用水标准的处理水,而且还可以将重金属废水浓缩,以便进一步回收重金属,是一种有前途的处理重金属废水的方法。
         按照这样的分离机理,超滤膜具有选择性表面层的主要因素是形成具有一定大小和形状的孔,聚合物的化学性质对膜的分离特性影响不大。
        一般认为超滤是一种筛孔分离过程,在静压差为推动力的作用下,原料液中溶剂和小溶质粒于从高压的料液侧透过膜到低压侧,一般称为滤出液或透过液,而大粒子组分被膜所阻拦,使它们在滤剩液中浓度增大。
        一股认为UF的分离机理为筛孔分离过程,但膜表面的化字性质也是影响越滤分离的重要因素。即超滤过程中溶质的截留有在膜表面的机械截留(筛分)、在膜孔中停留而被除去(阻塞)、在膜表面及膜扎内的吸附3种方式。
        总之,超滤对去除水中的微粒、胶体、细菌、热源和各种有机物有较好的效果,但它几乎不能截留允机离子。近年来,采用聚合物强化陶瓷超滤膜处理重金属废水,处理效率达到98%以上。利用络合剂的对离子的选择性可实现离子的选择性分离,陈桂娥等进行了PAA络合超滤分离镧和铕离子的实验研究。
        膜分离作为水处理技术中的先进技术得到越来越广泛的应用,但膜污染物及膜劣化的问题长期制约着处理工艺,使得怎样提高膜分离效率和利用率,成为膜分离技术中的关键问题。膜分离技术作为一种新型和高效的水处理技术受到各国水处理研究者的普遍重视,并取得了许多成功经验。今后随着膜制备技术的不断提高,膜分离在重金属废水处理工艺领域必将得到更广泛的应用。

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式
  • 电话

    0519-81660866

  • 传真

    86-0519-81668667

在线客服